Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks

نویسندگان

  • María Belén Federico
  • María Belén Vallerga
  • Analía Radl
  • Natalia Soledad Paviolo
  • José Luis Bocco
  • Marina Di Giorgio
  • Gastón Soria
  • Vanesa Gottifredi
  • Sue Jinks-Robertson
چکیده

Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the Fanconi anemia/BRCA pathway and recombination repair in the cellular response to solar ultraviolet light.

Recombination repair plays an important role in the processing of DNA double-strand breaks (DSB) and DNA cross-links, and has been suggested to be mediated by the activation of the Fanconi anemia (FA)/BRCA pathway. Unlike DNA damage generated by ionizing radiation or DNA cross-linking, UV light-induced DNA damage is not commonly thought to require recombination for processing, as UV light does ...

متن کامل

Residual DNA double strand breaks correlates with excess acute toxicity from radiotherapy

Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...

متن کامل

MRE11-RAD50-NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair.

Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross-links. It was reported earlier that FANCD2 co-localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid-S to G2 ...

متن کامل

H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks.

The variant histone H2AX is phosphorylated in response to UV irradiation of primary human fibroblasts in a complex fashion that is radically different from that commonly reported after DNA double-strand breaks. H2AX phosphorylation after exposure to ionizing radiation produces foci, which are detectable by immunofluorescence microscopy and have been adopted as clear and consistent quantitative ...

متن کامل

Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016